
International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016                                                                                                     1464 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org  

    Review of Lyapunov Methods for stability of 
Dynamic Systems and their  Region of      
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Abstract: Lyapunov Methods are widely used for proving stability of Non Linear System without solving the system. There are two  main 
methods i.e.Lyapunov Direct method & Lyapunov Indirect Methods. This paper outlines the examples where Lyapunov methods are 
effective as well as the examples where the methods fails to conclude stability . 
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  1 INTRODUCTION                                                                     

Introduction : Lyapunov Functions are widely discussed 
and  used in proving the stability of Dynamic System aris-
ing in the engineering and industrial problems. As it is 
 tedious and Time consuming to find solution of Dynamic 
System , the Russian Mathematician Alexander Lyapunov 
introduced Lyapunov functions to prove stability. Its Ver-
satility and simplicity has its application in almost every 
branch of Engineering. Its main application is to detect the 
domain of attraction which plays important role in control 
systems. It is revealed from so many examples[2],   [17]  
that Linear System   X. = A X,    X є |Rn   is stable if matrix A 
is Hurvitz Matrix , moreover its  only equilibrium point is 
origin which is asymptotically stable (explained in sec-
tion2)  So proving stability for  Non Autonomous Linear 
system  is much easier than non linear systems. In fact 
Lyapunov function’s role in this case is just to find Region 
of Attraction( R.A.) or Domain of attraction.   
There are two main Lyapunov Methods (section 1) 
  to prove stability. Lyapunov functions play very im-
portant role in case of Dynamic System particularly   con-
trol systems  Further stabilization of non linear system is 
estimated by linearizing it. [ 9 ], [ 10 ], [11]  Also it is 
claimed one can  not presume stabilization of  finite dimen-
sional non linear system for its infinite dimensional sys-
tem.[ 8 ]. whereas various researches have been done in  
finding  proper Lyapunov Function for a particular sys-
tem,which  is difficult task. In case of Control System as in [ 
14 ] an adaptive tracking control Lyapunov function(CLF) 
is used which is quadratic in parameter error.Here the 
problem of adaptive stabilization is reduced by solving it 
recursively  via backstepping  . In [15] the CLF is computed 
systematically by Lyapunov Indirect method using  Alge-
braic Riccati equation which can be generalized for higher 
order terms. However computational complexity appear-

ing can be solved using   computer aided software.  In [ 16], 
Linear Algorithm  with Numerical approach is used to con-
struct Lyapunov Function which includes Sub-Markov ma-
trix.  
 
 
 
 The following give Examples of linear and non linear sys-
tems  
    Linear Autonomous (Time invariant ) System 
        X. = A X,       X є |Rn                                      ....................    (1)   
Where A is a matrix,   A є |Rmxm  may represent  closed loop or 
open loop system   
   Linear Time Variant System      
         X. = A(t) X,       X є |Rn                                     .......................(2)         
  Non linear time Variant System  form 
       X.  =  F(t,X)  ,    X є |Rn                                              .................(3) 
 Non Linear Control System   
                X.   = f(x(t) , u(t))                                           ................... (4) 
where x(t) is state variable and u(t)  Is control .   
 
  Section 1 :  
 
In this, few terms are defined and explained  
 1.1) Equilibrium Point  : - Point Xe є |Rn   is said to be  

Equilibrium  point for any of  1) , 2), 3), 4) if      Xe
.
 = 0 

(It is found by equating r.h.s  of systems 1) ,2), 3) 4)to zero) 
1.2)Stability  : Stability of Equilibrium Point : An equilibri-
um point of system is said to be 
1.2.1) stable if for ε >0 , there is ᵹ> 0  such that ‖  Xe ‖ ˂ ᵹ 
implies  ‖  X(t) ‖ ˂ ε  for all t ≥ t0 
1.2.2) Asymptotically stable if it is stable and X(t) → 0 
        as t →∞  where x(t) being solution of the system 
1.2.3) Globally Asymptotically stable(GAS) : if it is as-
ymptotically stable on |Rn      
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 1.2.4) Exponentially stable if  there exists constants K1, K2  

and  λ  Such that  ‖  X(t) ‖ ˂   K1   ‖  X(t0) ‖ ˂ e- λ(t-t0)  
for all  ‖  X(t0) ‖ ˂ K2 ,       for   K1, K2  , λ > 0 

1.2.5) Unstable if it is not stable i.e. there exists ε ˃ 0  such 
that for every  ᵹ  ˃ 0 there is  X(t0) with  ‖  X(t0) ‖ ˂ ᵹ and   
 ‖  X(t1) ‖ ˃ ε     for some t1 ˃ t0  
1.2.6) Completely unstable if there exists ε ˃ 0  such that 
for every  ᵹ  ˃ 0 and for every   X(t0) with  ‖  X(t0) ‖ ˂ ᵹ ‖  
X(t1) ‖ ≥ ε   for some t1 ˃ t0 
The solution x(t) is called trajectory or motion flow. 
 
1.3)  Stability of equilibrium point with respect to 
the trajectory 
1.3.1) stability with respect to trajectory  
The equilibrium point Xe is stable if for given outer circle C 
with radius ε>0 ,there is inner circle C1 with radius ᵹ1 such 
that trajectory starting inside circle C1 never leave outer 
circle C 
  1.3.2)  Asymptotic stability with respect to trajectory  

The equilibrium point Xe is Asymptotically stable if there 
is some  circle C2  with radius ᵹ2 having same property as 
C1 but in addition trajectory starting inside C2 tends to Xe 
as t→∞ . 
 
                                      

 
Figure 1. Asymptotic Stability of Trajectory 

1.4)    Boundedness 

An equilibrium state Xe  said to be bounded if there exists 
real constant M, which may depend on t0  and x(t0) such 
that ‖  X(t) ‖ ≤ M  for all t ≥  t0 
1.5) What are the Lyapunov Functions  

  1.5.1) Lyapunov  Function Let D C |Rn and let a scalar   
     function V: D→ |R be C1 function &  V be defined as   

a) V(x) ≥ 0   for all x є D-{0} and V(x)=0  if x= 0 

b) V.(x) ≤ 0 for all x є D 
c) V . (x) ˂ 0 for all x є D-{0} 

Where V  satisfying a), b) is called Candidate Lyapunov 
Function  Any Equilibrium point of the system satisfying 
the conditions  a), b) is Lyapunov stable and satisfying all 
a),b) c) is Asymptotically stable  

 

                       Figure 2 : Lyapunov Function 

 

  

 

 

 

 

 

 
 
 
 

Figure 3. 
 
Many times Energy Storage of the system considered to be 
Lyapunov function of the system.  
 
Definition : A continuously Differentiable positive definite func-
tion V(x) is  Control Lyapunov Function 
(C.L.F.) for the system x. = f(x) + g(x) u      if 

• ∂v  g(x) = 0 for  x є D   for some D C |Rn   & 
∂x                                

• ∂v  .f(x)< 0 for all x≠ 0 

• The system can have more than one equilibrium points 
• . Stability is the property of the equilibrium point and not 

of the system. 
• Stability of of the equilibrium point is equivalent to the 

stability of the system if it has only one equilibrium point. 
• The origin is only equilibrium point of system1) 
• R.A. means Region of Attraction   
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∂x 
• If  D= Rn  then V is global Control Lyapunov Fun-

tion  
Lyapunov Function of dynamic Control System are Taken 
in terms of Control Lyapunov function (C.L.F) 
 
There are two main  methods to find Lyapunov Functions 
for given linear or Non linear system  
i) Direct Method : In this, Function V(x) appears in Quad-
ratic Form   V(x) = Ax12 + B x22 where A,B> 0 є |R constants 
and (x1, x2) є |R2   (same form can be generalized for |Rn) 
Most often Non linear systems are linearalised By Jacobian 
Method and V(x) is found for its Linear form and then 
 result is generalised for non linear system. 
 (some cases Quadratic form of Lyapunov Function is ap-
plied for non linear System) 
ii) Indirect method :- In this the positive definite and sym-
metric  Matrix P satisfying Lyapunov Equation 
  ATP +PA =  Q  is solved where  P,Q, A have same matrix 
Dimensions and Most often Q is taken as Q= In  
(or Q is Positive definite ,symmetric matrix)  
Once the Lyapunov equation is solved for P , V(x) assumes 
the  quadratic form  V(x) = xTP x . 

1.6) Region of Attraction(RA) :- Let  x.  =  f (t,x)  .... be non 

linear time dependent system , where  f : D→ |Rn ,   DC |Rn 
Let  ɸ(t,x) be the solution of above system , then the set R=  
{x(t) / ɸ(t,x)→0 as t→∞} is called Region of Attraction 
1.7 ) Invariant set : M is called Invariant set if for system 

 x.  =  f(t,x)        x(0) є M  implies  x(t) є M   for all t >0 

 

 

 
                                     Figure 4. Invariant Set 
 
1.8)  La Salle’s Invariant Set Theorem 1 : 

 Let ῼ  C |Rn compact  Invariant Set for   X.  =  f(t,X)   

Let V: ῼ→ |R  be C1 function such that V . (X) ≤ 0 

 for all X  є ῼ, and E={ X  є ῼ,/ V.(X) = 0} and  
M be the largest subset of E ,then for all    x(0) є ῼ,  
X(t) approaches to M as  t→∞. 
                                                                             
Section 2 : Different Examples including one linear and 
othe Non linear systems 
 
linear System  where Lyapunov function fits  to Prove 
Global Asymptotic  Stability (R.A. is |R2  ) 
Example1) 
Ex 1) Discuss  the stability of the Linear System       

           x
.
 = A x                                  ...............  .(E1)  

where A= [−1  4; 0 -3]      and X=[ x1 x2] T     (x1, x2) є |R2    

i.e.  x1 
. =  − x1 +4x2   & x2

.    = − 3x2  
By setting x.  = 0 we find origin (0,0) is Equilibrium Point 
Clearly the eigen values of A are  {-1,-3} A is Hurvitz 
To check the stability of Equilibrium Point . 
 By direct Method  : Assume V(x) = Ax1

2 +Bx2 
2   

where  A,B>0  
 V. (x)=  2Ax1x1. +2B x2 x2 .  = 2Ax1 (−x1 +4x2 ) +2B x2 (−3x2 )  
          = − (2 Ax12 +6Bx2 2) + 8A x1x2  <  0 for all (x1, x2)  ≠  
(0,0)  & for all real A,B>0  
Therefore origin is Asymptotically stable and the Region of 
asymptotic Stability is being entire |R2  set, origin is  G.A.S. 
. 
By Indirect Lyapunov Method: -Here, to find Matrix P of 
same dimesion as that of A and which is Positive definite 
also , satisfying 
 ATP +PA = - Q  where Q= I2.  And then find V(x) = XTPX 
Solving for P , P=  [1/2 ½;  1/2  5/6  ]                    
So V(X) =    XTPX  =   [ x1 x2]  [1/2 1/2 ;  1/2  5/6  ] [ x1 x2] T      
                 = 1 /2  x12 +x1x2 +5/6 x22  
 V .(X) =  1 /2  (2x1x.1 ) + x.1x2 +x1 x.2 + 5/6 (2x2 x.2) 
     = − x12 +4x1x2 –x1x2 +4x22 -3x1x2-5x22  = − ( x12 + x22 ) 
< 0 for all (x1, x2)  ≠  (0,0) 
Clearly it shows the domain of asymptotic Stability is en-
tire |R2   set (also it is clear from eigen values of matrix A  
That (0,0) is asymptotically stable ) 
In this case either method can be used as shows similar 
result about stability. 
 
The Non linear System where Lyapunov Function can not 
conclude Asymtotic Stability unless damping torgue is 
added [3] 
Example 2)The  dynamic equation of a pendulum compris-
ing a mass M at the end of a rigid but massless rod of 
length R is     MRӫ +Mg sin ө =0  
where ө  is the angle made with the downward direction, 
and g is the acceleration due to gravity. Consider  the sys-
tem in state-space form, (without damping) 

* Matrix Anxn    Hurvitz  Matrix  if  its  all eigen values have negative real Parts  
* Linear System X. = A X, is   G.A.S. if matrix  A is  Hurvitz    

* Here A = [ -1 4; 0 -3] is matrix of order 2x2 with first row -1, 4 and 2nd 
row 0,-3 

* Main purpose of Lyapunov functions for linear system is   to find 
region of attraction  
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MRӫ +Mg sin ө =0                                      ......(5) 
let x1 = ө  and x2 =ө.  then   x1 .  =x2   &    x2 . =  − g/R 
sinx1  

 
Taking  candidate Lyapunov function as total Energy in the 
system. Then V =  1/2(MR2 x22 ) + MgR (1 cosx1 ) =Kinetic + 
Potential Eenergy , 
 
 
 V .  = MR2 x2 (− g/R sinx1) + MgR sinx1 .x2  = 0  

Hence, V is a Lyapunov function and the system is stable in 
sense of Lyapunov .We cannot conclude asymptotic stabil-
ity with this analysis.  
Now let the damping torque –Dx2 be added to the velocity  

x2 
.  so that the new  equations are  

x1 .  = x2   and  x2 . =  − Dx2 −g/R sinx1   with  same   
V (x)  so that   V.  = − DMR2x22  < 0 for    x2 ≠ 0 
 
From this we can conclude stability Lyapunov Stable, 
but cannot directly conclude asymptotic stability. 

Notice however that V. =0. →x2=0 → ө.= 0  Under 
this condition, ӫ= −g/R sin ө. Hence ӫ ≠ 0 for some 

 ө≠ k π  for integer k, i.e. if the pendulum is not ver-
tically down or vertically up. This implies that, un-
less we are at the bottom or top with zero velocity, 
we shall have ӫ ≠ 0 when V . =0., so ө. will not re-
main at 0, and hence the Lyapunov function will 
begin to decrease again. The only place the system 
can end up, therefore, is with zero velocity, hanging 
vertically down or standing vertically up, i.e. at one 
of the two equilibria. The formal proof of this result 
in the general case (LaSalle's invariant set theorem)  

The conclusion of local asymptotic stability can also be ob-
tained directly through an alternative choice of Lyapunov 
function. Consider the Lyapunov function candidate  
V (x) = 1/2 x

2
2 + 1/2 (x1 + x2)

2
+ 2(1- cos x1) 

V . =  ̶  ( x2 2 + x1 sin x1)= − (ө.2 + ө sin ө ) ≤ 0  
Also, ө.2+ ө sin ө =0→ ө.2 =0 ,ө sin ө =0→ ө . =0;  
ө =0; Hence, V>  is strictly negative in a small neigh-
borhood around 0. This proves asymptotic stabil-
ity.In above, Energy storage function is taken as 
Lyapunov function which does not conclude as-
ymptotic stability Where as when quadratic form of 
Lyapunov function is used it shows asymptotic sta-
bility.  

Theorem 2 Consider the nonlinear time-invariant system  

defined on a Banach space X with norm║    ║ 

Consider  z. (t) =   F(z(t) ), .............(*) t > 0  with z(0) = z0 
where z0 is the initial condition, the nonlinear operator  
F :D(F) ⊂ X → X is densely defined on X. Assume that this 
system is well-posed; that is, it has a unique solution that 
can be written z (t) = S(t) z0,where S (t) is a nonlinear  
C0-semigroup on X generated by the operator F. finite- 
dimensional. Assume also that F is differentiable and   define 
A =   ∂F  
         ∂z |z=ze      to be the linearization of  (*). Then 
(i) if Reλ(A) < 0 for all λ ∈ σ (A), then the equilibrium 
ze to (*) is exponentially stable where σ (A) is the 
spectrum of A. 
(2) if there exists λ ∈ σ (A) such that Reλ > 0, then the 
equilibrium ze to (*) is unstable. 
 
Linearization  of Non linear System using Jacobian 
to check  stability by Lyapunov Methods  [2] 

 
Example 3)Consider  Non linear System(Van Der Pol equa-
tion) 
      x1 .  = x2  &     x2 . = − x1 + ε x2 – ε x12       ………E3)  
clearly (0,0) is equilibrium point of the system ,taking  
Jacobian around (0,0) , the linearised system is  
  x. =[x1 .  x2 . ] T =Ax  where A= [ 0 1; -1 ε ] 
Let the Lyapunov function be V= x12 +a x2 2 

 V . = 2 x1 x1
. +2a x2  x2

. = 2 x1 (x2) +2 ax2(− x1+ε x2) 

 So,     V .  = 2x1x2 (1 ̶  a) + 2a ε x22 ≤ 0  
Setting  a= 1  and  ε ˂ 0 
As linearized system depends on’ a’ & ‘ε’ ,  
So system (0,0) is asymptotically stable if a= 1 & ε ˂ 0  
The state System strongly depends on nature of ε i.e. 
system equilibrium point is   asymptotically stable If ε ˂ 0  , 
  ii) If ε > 0   unstable iii)  Lyapunov stable if  ε =0   
But  original system (E5)can not guarantee stability of 
(0,0) even  ε ˂ 0 as the Jacobian of the system  

    can have some of the eigen values 
 (ε + √ ε2+4)/2 in right plane i.e.  (Re(λA) >0 for some ε ˂ 0 
So clearly stability of linear system can not be concluded 
for  non linear system 
 
Example of Dynamic System where Lyapunov Methods give 
different Region of Attraction [9] 
 
Example 4) Consider following non linear system 
 x1 .  = x1 (x12  +x2 2 − 2) −  4x1x22   ≈ f1(x1 ,x2 )  & 
x2 .  =  4x12 x2  +x2 (x1 2+x2 2 − 2) ≈ f2(x1 ,x2 )  …….E4) 
  clearly f1(0,0 ) = f2 (0,0 ) = 0 i.e. x=0 is equilibrium p  oint 
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Candidate Lyapunov function V(x1 ,x2 ) = x1
2 

 +x2 
2 

Which is globally positive definite has   

V . (x1 ,x2 ) =2 (x1
2 

 +x2 
2)  (x1 

2+x2 
2- 2) < 0 if x1

2 
 +x2 

2 < 2 
So Domain of attraction (R.A.) can be taken as Ball Bε  
Such that  Bε ={ ║x║< ε/0< ε < 2} 
Now By Lyapunov Indirect Method , linearizing the system  
   
 By Jacobian       ∂F  =[-2 0; 0 -2] = A  
                             ∂x(0,0)    and finding  Matrix P >0  
Such that   ATP +PA  =  ̶   Q where Q= [1 0 ; 0 1]   
  P= [1/4 0 ; 0 1/4 ] which is positive definite. 
Taking V =   [x1 ;x2 ]T P [x1 ;x2 ] = 1/4x1

2 +1/4x2
2 

→V.  =  ̶  (x1 
2+x2 2) < 0 for all (x1 ,x2 ) ≠ (0,0) 

Proves the global asymptotic stability of (0,0) which gives  
Domain of attraction as entire |R2  
   
Theorem 3: Consider the nonlinear system (*) defined on a Ba-
nach space X. Assume that the nonlinear operator F : D(F)⊂ X 
→  X generates a nonlinear C0-semigroup S (t).   
 Let ze be an equilibrium for the above system (*) and suppose 
that S (t) is Fr´echet differentiable at  ze. 

(i) If ze is an exponentially stable equilibrium of  
the lnearized  system, then ze is a locally exponentiallystable 
equilibrium of the nonlinear system (*). 
(ii) If the linearized system is unstable, then the nonlinear 
system (*) is locally unstable.  

 

 
Eample 5) Let ℓ2 be the space of square summable 
sequences and N the set of natural numbers with norm 
║・║ℓ2 . 
For any z(t) = (z1(t), z2(t), . . . , zn(t), . . . ) ∈  ℓ2 with n ∈ N,  
consider z˙n = − 1/zn + z2n             …………......(E5) 
Then  this system has infinitely many equilibrium points , 
The set of euilibria is E={ z ∈   ℓ2| zn ∈   { 0,1/n}, n ∈  N } 

Linearizing the system around ze = 0, 
z˙n (t) = −1/n zn (t) , t ≥ 0  which has solution  
which has solution    z(t) = (z1(0)e−t, z2(0)e−1/2t   ., . . . ). 
The linearized system (E5) is asymptotically stable since 
Lim║z (t)−ze║ℓ2 = lim ║z (t)║ℓ2 = 
t→∞                          t→∞ 

  lim    ( *  e(−2/n)t  )       =  0 
   t→∞ 
The solution of (E5) is zn (t) =        z0*  * e (-1/n) t              . 
                                                   z0n (-1+ e (-1/n) t ) + 1  
Where  z0n  is initial condtion. For any ∂ > 0, choosing 
N such that 1/n <  ∂   
In the nonlinear system (E5), choose components of the 
initial condition z0 to be zero except in the nth position, 
which is chosen to be 1/n . that is  z0 = ( 0,0,0,....1/n, 0 ,0 ....)  
Given this initial condition, the solution to (4) is  
.z(t) = ( 0,0,0,....1/n, 0 ,0 ....)  
and hence ║z0 – ze║ ℓ2 = 1/n < δ. However,  
lim ║z (t) − ze║kℓ2 = 1/n  ≠  0 
t→∞ 
hence the zero equilibrium of non linear system is not 
asymptotically stable . 
  
Lyapunov-Like Lemma : 

• If a scalar function V =  V(t,x) is such that  
               V(t,x) is lower bounded  

• V.(t,x) is negative semi definite along the trajectories of 
x.  =f (t,x) and  

• V.(t,x) is uniformly continuous in time then 

             V.(t,x) → 0 as t → ∞ 
 
Section3  
 
Control Lyapunov function for non linear  control 
System  [10] 
 
Example 6)    Consider Non Linear system  
 x. =f(x) + g(x) . u ,      ……….(E6)            f(0) = 0  
where f(x) is input and ‘u’ is control Let f(x) = -x3 and let 
g(x) = 1 Therefore  x. =  ̶  x3  + 1. u 
Taking L.F.  V(x) =  ½  x2 then V is positive definite and  
V.  =  x. x.  =    ̶  x4  + u.x  

To get  V.   Negative definite ,  
choosing u=  x3   ̶  k.x where ‘k’ is positive constant  
 V.   =  ̶  k x2  < 0 for all  x ≠ 0  

Jacobian is defined as  ∂F(0,0)= [∂F    ∂F  ] ,( x1, x2) є |R2    
                                         ∂x            ∂x1   ∂x2   
If the eigen values of Jacobian Matrix of the system are 

•   Negative or complex with negative real part the 
Equlibrium point is called  Sink .The system is stable 

• positive or complex with positive real part the Equlib-
rium point is called  Source . 

• The system is unstable with real of  different sign, 
equilibrium point is called Saddle point . The system 
is unstable 

Example where asymptotic stability of linear system  
does not conclude A.S. to  the infinite dimensional 
non linear system   [8] 
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Which proves system is  G.A.S.  
However control ‘u’ can be taken of any other  
 suitable choice .  
 
 
    
Example of non autonomous sytem where LaSalle ‘s In-
variant set Theorem does not work 
 
Example 7) For closed loop error Dynamics of an adaptive 

Control system  e . = - e + ө w(t)    

                      &       ө .  = −  e w(t)                 ……}   (E7) 
Where ‘e’ represents the tracking error and w(t) is a 
bounded function of time t. .This function w(t) makes the 
system non autonomous.  
Taking Lyapunov Function for above system , 
V(e, ө) = e2 + ө 2   , so that its time derivative about system 

Trajectory is  V. (e, ө) = 2 e e . + 2 ө ө .   
          =  2 e(−e + ө w(t)) + 2 ө (− e w(t) ) = −2 e2 ≤ 0 
This implies V is decreasing function of time and both e(t) 
& ө (t)  are bounded . But due to non autonomous nature 
of system dynamics, LaSalle theorem can not be used to 
concude the convergence of e(t) to the origin  

 Now V..  = − 4 e e . = − 4 e((−e + ө w(t)) 
Since w(t) is bounded by hypothesis and also e(t) & ө (t)  

are bounded , it is clear that V..  is bounded . Hence V. 
Is uniformly continuous  and by Lyapunov-Like Lemma,  

V.→ 0 Which indicates tracking error e(t) → 0 as t → ∞ 
  
 

 
 
 A Typical Lyapunov Function in Quadratic Form 

v(x) 
 

 
 

Lyapunov Derivative v . (x) 
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Conclusion :  
 
Proving stability of linear system is easier by any Lyapunov  
method , in fact the stability is clear from system matrix A if 
it is Hurvitz . For non linear systems , their linearization is 
checked for stability and the result is generalised for non 
linear system (i.e. if linear system is stable then so its corre-
sponding non linear.) But some cases such  generalization 
backfires. 
Normally Lyapunov Direct Method proves to be a more 
general and powerful approach, enabling the potential 
global stability of the general nonlinear system to be inves-
tigated and therefore does not suffer from the drawbacks 
incurred by Lyapunov’s indirect method 
Provided that the required Lyapunov function, as well as 
its time derivative, must satisfy rigid constraints. 
Furthermore, there can be ‘n’ Lyapunov functions suitable  
to the system and failing of one Lyapunov function to 
prove stability of the system does not concludes that sys-
tem is unstable. It only suggests pertaining to particular 
L.F. system can be unstable. 
So Lyapunov functions   satisfy sufficient condition and not 
necessary condition to prove stability . 
Main application of Lyapunov function is  to find Domain 
of attraction which is of paramount use in  Dynamic sys-
tems such as control system. 
However there is need to formulate Lyapunov function in 
future so as to facilitate uniformity in its applications. 
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